Dynamic Voltage Scaling Techniques for Energy Efficient Synchronized Sensor Network Design
نویسندگان
چکیده
Building energy-efficient systems is one of the principal challenges in wireless sensor networks. Dynamic voltage scaling (DVS), a technique to reduce energy consumption by varying the CPU frequency on the fly, has been widely used in other settings to accomplish this goal. In this paper, we show that changing the CPU frequency can affect timekeeping functionality of some sensor platforms. This phenomenon can cause an unacceptable loss of time synchronization in networks that require tight synchrony over extended periods, thus preventing all existing DVS techniques from being applied. We present a method for reducing energy consumption in sensor networks via DVS, while minimizing the impact of CPU frequency switching on time synchronization. The system is implemented and evaluated on a network of 11 Imote2 sensors mounted on a truss bridge and running a high-fidelity continuous structural health monitoring application. Experimental measurements confirm that the algorithm significantly reduces network energy consumption over the same network that does not use DVS, while requiring significantly fewer re-synchronization actions than a classic DVS algorithm.
منابع مشابه
Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملDesign Space Exploration for Energy-Efficient Secure Sensor Network
We consider two of the most important design issues for distributed sensor networks in the battlefield: security for communication in such hostile terrain; and energy efficiency because of battery’s limited capacity and the impracticality of recharging. Communication security is normally provided by encryption, i.e., data are encrypted before transmission and will be decrypted first on receptio...
متن کاملEvolutionary Computing Assisted Wireless Sensor Network Mining for QoS-Centric and Energy-efficient Routing Protocol
The exponential rise in wireless communication demands and allied applications have revitalized academia-industries to develop more efficient routing protocols. Wireless Sensor Network (WSN) being battery operated network, it often undergoes node death-causing pre-ma...
متن کاملNear Threshold Computing: Overcoming Performance Degradation from Aggressive Voltage Scaling
Power has become the primary design constraint for chip designers today. While Moore’s law continues to provide additional transistors, power budgets are beginning to prohibit those devices from actually being turned on. To reduce energy consumption, voltage scaling techniques have proved a popular technique with subthreshold design representing the endpoint of voltage scaling. However, while e...
متن کاملInterplay of Communication and Computation Energy Consumption for Low Power Sensor Network Design
The sensor network design approach normally considers the communication energy consumption for evaluating a communication protocol. This is true for the low power devices such as MICAz/MICA2 which do not consume a lot of energy for the data treatment. However, recently developed sensor devices for multimedia applications such as iMote2 do consume considerable amount of energy for data processin...
متن کامل